
Simple Backpropagation Proof

London Lowmanstone IV

July 2018

1 Introduction

This is a very simple proof/explanation of the math behind the backpropagation
algorithm.

Here we assume we have a neural network with no biases and no activation
functions. That is, each layer of the neural network is computed by multiplying
the output of the previous layer by a weight matrix.

2 Definition of variables

We have a neural network with L layers. A simple neural network with just an
input layer and an output layer and one set of weights between the two, would
have L = 2. The Lth layer is the last layer, also known as the output layer.

The outputs of a layer n are notated as an. Thus, the final output of the
network is written as aL. The weight matrix that goes from the nth layer to
the (n+ 1)th layer is written as wn.

The cost function, C(aL, y) is a function of the output layer of the neural
network, aL, and the target output that was wanted from the neural network y.
A common example of a cost function is known as mean-squared-error and is
generally computed as C(aL, y) = 1

2 (aL − y)2. Since cost functions are always
functions of the last layer and a target output, the cost function will generally
be written as just C.

To summarize:
L: the number of layers in the neural network (including the input and

output layers)
an: the output of the nth layer
aL: the output of the last layer in the network
wn: the weight matrix from the nth layer to the (n+ 1)th layer
C: the cost function for the network

1



3 Goal

The goal of backpropagation is to minimize the cost function C by changing the
weights w inside of the network. The idea is as follows. Let’s assume we can
compute the slope of the function with respect to how we change the weights in
our network. That is, let’s assume we can compute ∂C

∂wn
for each weight matrix

wn in the network. If we can, then we can move the weights in the direction
that the slope suggests will make C smaller, thus minimizing C.

In practice, we choose some learning rate α and then update each weight
matrix wn by doing the update

newwn = (oldwn) − α ∗ ∂C

∂wn
.

That is, the bigger the slope of the cost function, the more we move the weights
in the direction where we think the cost will be lower.

And that’s backpropagation. The hope is that if we minimize the cost for a
lot of different inputs, the same weights will also minimize the cost for inputs
it hasn’t seen yet, and so the neural network will be accurate and generalize
across new inputs.

So, this paper focuses on proving that we can indeed compute ∂C
∂wn

for each
weight matrix wn, and thus we can perform that update step to train the net-
work to minimize the loss.

Overall, our goal is to prove that ∂C
∂wn

can be computed.

4 Assumptions

These are things we assume to be true by the nature of neural networks and
how we’ve defined them.

4.1 Equations

Since this is a very simple neural network with no activation functions and no
bias, the output of any layer is merely the output of the previous layer multiplied
by the weight matrix in between them. Thus,

an+1 = wnan.

We’re also going to define a new quantity called the “error” in a layer,
notated as En for the error in layer n. The error is defined as

En =
∂C

∂an
.

This is the slope of the cost function with respect to the output of a layer. We
define this intermediate quantity because it will help with our proof later on.

2



4.2 Computable Quantities

Since our goal is to show that ∂C
∂wn

can be computed, we need to make as-
sumptions about what things are already computable, and then prove that the
computation for ∂C

∂wn
relies only on quantities that are computable.

In this proof, we assume the following entities are computable:

a1: the input to the neural network. We assume that we know what we put
into our own neural network.

wn: the weights of the neural network. It is assumed that we can access the
weights of the network (especially since we’re going to be updating them).

an: the output of each layer in the neural network. It is assumed that we
can run the neural network to obtain these values. (Technically, we could prove
that this is computable since wn and a1 are assumed to be computable and
an+1 = wnan, but it seemed easier to just include this as an assumption.)

y: the target output of the neural network. We assume that during training
we know what we want the network to output. (This is called “supervised
learning.”)

∂C
∂aL

: the slope of the cost function with respect to the output of the network.
It is assumed that this can be computed for any aL and y. For example, for the

mean-squared-loss formula, ∂C
∂aL

=
∂ 1

2 (aL−y)2

∂aL
= aL − y, which is computable.

(We have assumed that both an and y are computable, thus, thus aL − y is
indeed computable.)

To summarize, we assume that the following quantities are computable: a1,
wn, an, y, and ∂C

∂aL
.

5 Proof

Now that everything is defined, and we know which things are computable, we
can begin our proof that ∂C

∂wn
is computable.

First, let’s show that the error in the last layer is computable. This error is
is defined as

EL =
∂C

∂aL
,

which is assumed to be computable. Thus EL is computable.
Now, let’s see if we can come up with a computable formula for En, the error

in any layer, based on the error in the last layer, EL.

3



From the definition of En we have:

En =
∂C

∂an

=
∂C

∂an+1

∂an+1

∂an
(By the Chain Rule)

= En+1
∂an+1

∂an
(By the definition of En)

= En+1
∂wnan
∂an

(By the definition of an+1)

= w>nEn+1.

(Note that in the last line I rearranged the terms and transposed the weight
matrix in order to make sure the dimensions matched up.)

So, since EL is computable, we can use it to compute EL−1 = w>L−1EL and

similarly use EL−1 to compute EL−2 = w>L−2EL−1, etc. (This is a simplification
of a formal proof by induction.) Thus, En is computable.

You may be beginning to see why this algorithm is called “backpropagation,”
as we are using the results from future layers to compute values for previous
layers.

Our last step is to finally prove that ∂C
∂wn

is computable. From the Chain
Rule, we have:

∂C

∂wn
=

∂C

∂an+1

∂an+1

∂wn

= En+1
∂an+1

∂wn
(By the definition of En)

= En+1
∂wnan
∂wn

(By the definition of an+1)

= En+1a
>
n .

(Again, note the transpose to make sure the dimensions match up.)

We’ve shown that En is computable, and we assumed an is computable, and
thus, ∂C

∂wn
is computable as well.

Note that backpropagation all starts by determining the error in the last
layer, and then using that to compute how the weights in previous layers should
change.

To understand more of the math behind neural networks with activation
functions and biases, http://neuralnetworksanddeeplearning.com/chap2.html
is a good resource. (It’s also where I learned the equations for this simpler proof.)

4


